圖1. 典型電子戰架構信號鏈
從歷史上來看,在增加瞬時帶寬的同時維持需要的線性度需要使用多個重疊接收器或一種交錯式架構。重疊的接收器各自數字化所需帶寬的一部分,并用數字信號處理技術把來自各個通道的數據和可觀測頻譜重新組合起來。對于交錯式架構,一般要搭配校準使用,以便最大限度地減小轉換器之間的相差、失調差和增益差。兩種方案的實現成本都比較高,但數字信號處理往往會根據實現需求進行定制。
ADI的新型RF采樣ADC (如AD9625)為新一代系統提供了解決方案,不但可以提供更大的瞬時帶寬,同時還具有更高的線性度,能夠維持所需要的靈敏度水平。AD9625是一款2.5 GSPS、12位ADC,可增進高帶寬交流性能,在1 GHz輸入下,其典型寬帶SNR/SFDR分別達到前所未有的57 dB/80 dB。另外,這款ADC還支持確定到達角往往需要的多轉換器同步,集成了數字下變頻器(DDC)以便抽取和觀測輸出頻譜的較小部分。
AD9625能支持超過3 GHz的小信號模擬帶寬,可為系統設計師提供很大的IF定位靈活性。憑借第一和第二奈奎斯特采樣選項和超過1 GHz的可用帶寬,設計師可以最大化前端接收器架構的性能,實現濾波和系統復雜性的最佳平衡。
ADI推出了支持并行接口和串行接口(包括JESD204B標準)的器件。這對于眾多電子戰系統的高數據速率和低延遲要求是極其重要的。
為了便于快速制作原型和系統開發,AD9625以VITA 42/FPGA夾層卡(FMC)平臺的形式提供(見圖2)。該平臺提供了一些參考設計,可借以了解如何優化ADC前方的信號調理以實現性能優化;同時,平臺還可確保ADC與處理單元之間的數據處理接口擁有充足的帶寬,以便在仍然使用CoT架構的條件下,支持來自轉換器的實時全速率數據傳輸需求。結果打造出一款高效的架構,集成2.5 GSPS ADC COTS解決方案,以最小尺寸提供高速導管。

圖2. AD9625 (2500 MSPS、12位FMC板,帶同步支持)。(PN:AD-FMCADC2-EBZ)
通道選擇器概述
盡管電子攻擊系統、電子支援系統和電子保護系統中的信號都各有特點,但它們都有一個共同的組件,即數字通道化接收器,也稱通道選擇器。通道選擇器把一個寬帶寬拆分成小帶寬,以便把目標信號與噪聲和干擾信號分開,從而在單個子通道中可靠地檢測到低SNR和時間敏感信號。多數數字通道化接收器都由一個濾波器組和快速傅里葉變換(FFT)組成。
作為設計工程師,這里面臨的一個挑戰是,每次設計或升級新的電子戰系統時,通常都要求開發更加復雜的通道選擇器。這是因為新設計通常會導致必要的硬件升級,以支持速率更高的轉換器和更高的處理性能,以應對不斷變化的全球威脅。為了加快通道選擇器的開發步伐,降低內部研發(IRAD)成本,Altera開發了一款超高采樣速率的FFT IP和FIR濾波器IP內核,能夠處理多-GSPS轉換器輸入。這些IP內核可根據多種輸入參數,優化您的解決方案,如圖3所示。

圖3. Altera超高采樣速率FFT配置
圖4通過一般電子戰系統框圖描述了通道選擇器的作用,在該圖中,先對數字化輸入射頻(RF)寬帶信號進行下變頻和數字化處理,然后饋入通道化接收器之中。對各通道的輸出進行信號檢測和估算,以便把威脅信號與中立方和友方信號分辨開來。一旦發現威脅且有數據作為支撐,某些電子戰系統就會通過干擾對抗威脅。在此過程中,接收器可能會產生各種干擾信號。在敵方發射機中,這些干擾信號可能表現為陷波白噪聲或再生虛假反射信號(即DRFM)。干擾信號通過反相通道選擇器,后者的作用是重構寬帶反射信號。反射信號在上變頻回敵方發射機之后再發射。
