帶寬、采樣率和存儲深度是數字示波器的三大關鍵指標。相對于工程師們對示波器帶寬的熟悉和重視,采樣率和存儲深度往往在示波器的選型、評估和測試中為大家所忽視。這篇文章的目的是通過簡單介紹采樣率和存儲深度的相關理論結合常見的應用幫助工程師更好的理解采樣率和存儲深度這兩個指針的重要特征及對實際測試的影響,同時有助于我們掌握選擇示波器的權衡方法,樹立正確的使用示波器的觀念。
在開始了解采樣和存儲的相關概念前,我們先回顧一下數字存儲示波器的工作原理。

圖1 數字存儲示波器的原理組成框圖
輸入的電壓信號經耦合電路后送至前端放大器,前端放大器將信號放大,以提高示波器的靈敏度和動態范圍。放大器輸出的信號由取樣/保持電路進行取樣,并由A/D轉換器數字化,經過A/D轉換后,信號變成了數字形式存入內存中,微處理器對內存中的數字化信號波形進行相應的處理,并顯示在顯示屏上。這就是數字存儲示波器的工作過程。
采樣、采樣速率
我們知道,計算機只能處理離散的數字信號。在模擬電壓信號進入示波器后面臨的首要問題就是連續信號的數字化(模/數轉化)問題。一般把從連續信號到離散信號的過程叫采樣(sampling)。連續信號必須經過采樣和量化才能被計算機處理,因此,采樣是數字示波器作波形運算和分析的基礎。通過測量等時間間隔波形的電壓幅值,并把該電壓轉化為用八位二進制代碼表示的數字信息,這就是數字存儲示波器的采樣。采樣電壓之間的時間間隔越小,那么重建出來的波形就越接近原始信號。采樣率(sampling rate)就是采樣時間間隔。比如,如果示波器的采樣率是每秒10G次(10GSa/s),則意味著每100ps進行一次采樣。

2 示波器的采樣
根據Nyquist采樣定理,當對一個最高頻率為f 的帶限信號進行采樣時,采樣頻率SF必須大于f 的兩倍以上才能確保從采樣值完全重構原來的信號。這里,f 稱為Nyquist頻率,2 f 為Nyquist采樣率。對于正弦波,每個周期至少需要兩次以上的采樣才能保證數字化后的脈沖序列能較為準確的還原原始波形。如果采樣率低于Nyquist采樣率則會導致混迭(Aliasing)現象。

圖3 采樣率SF<2 f ,混迭失真
圖4和圖5顯示的波形看上去非常相似,但是頻率測量的結果卻相差很大,究竟哪一個是正確的?仔細觀察我們會發現圖4中觸發位置和觸發電平沒有對應起來,而且采樣率只有250MS/s,圖5中使用了20GS/s的采樣率,可以確定,圖4顯示的波形欺騙了我們,這即是一例采樣率過低導致的混迭(Aliasing)給我們造成的假像。

因此在實際測量中,對于較高頻的信號,工程師的眼睛應該時刻盯著示波器的采樣率,防止混迭的風險。我們建議工程師在開始測量前先固定示波器的采樣率,這樣就避免了欠采樣。力科示波器的時基(Time base)菜單里提供了這個選項,可以方便的設置。
由Nyquist定理我們知道對于最大采樣率為10GS/s的示波器,可以測到的最高頻率為5GHz,即采樣率的一半,這就是示波器的數字帶寬,而這個帶寬是DSO的上限頻率,實際帶寬是不可能達到這個值的,數字帶寬是從理論上推導出來的,是DSO帶寬的理論值。與我們經常提到的示波器帶寬(模擬帶寬)是完全不同的兩個概念。
那么在實際的數字存儲示波器,對特定的帶寬,采樣率到底選取多大?通常還與示波器所采用的采樣模式有關。
采樣模式
當信號進入DSO后,所有的輸入信號在對其進行A/D轉化前都需要采樣,采樣技術大體上分為兩類:實時模式和等效時間模式。
實時采樣(real-time sampling)模式用來捕獲非重復性或單次信號,使用固定的時間間隔進行采樣。觸發一次后,示波器對電壓進行連續采樣,然后根據采樣點重建信號波形。
等效時間采樣(equivalent-time sampling),是對周期性波形在不同的周期中進行采樣,然后將采樣點拼接起來重建波形,為了得到足夠多的采樣點,需要多次觸發。等效時間采樣又包括順序采樣和隨機重復采樣兩種。使用等效時間采樣模式必須滿足兩個前提條件:1.波形必須是重復的;2.必須能穩定觸發。
實時采樣模式下示波器的帶寬取決于A/D轉化器的最高采樣速率和所采用的內插算法。即示波器的實時帶寬與DSO采用的A/D和內插算法有關。
這里又提到一個實時帶寬的概念,實時帶寬也稱為有效存儲帶寬,是數字存儲示波器采用實時采樣方式時所具有的帶寬。這么多帶寬的概念可能已經看得大家要抓狂了,在此總結一下:DSO的帶寬分為模擬帶寬和存儲帶寬。通常我們常說的帶寬都是指示波器的模擬帶寬,即一般在示波器面板上標稱的帶寬。而存儲帶寬也就是根據Nyquist定理計算出來的理論上的數字帶寬,這只是個理論值。
通常我們用有效存儲帶寬(BWa)來表征DSO的實際帶寬,其定義為:BWa=最高采樣速率 / k,最高采樣速率對于單次信號來說指其最高實時采樣速率,即A/D轉化器的最高速率;對于重復信號來說指最高等效采樣速率。K稱為帶寬因子,取決于DSO采用的內插算法。DSO采用的內插算法一般有線性(linear)插值和正弦(sinx/x)插值兩種。K在用線性插值時約為10,用正弦內插約為2.5,而k=2.5只適于重現正弦波,對于脈沖波,一般取k=4,此時,具有1GS/s采樣率的DSO的有效存儲帶寬為250MHz。

圖6 不同插值方式的波形顯示
內插與最高采樣率之間的理論關系并非本文討論的重點。我們只須了解以下結論:在使用正弦插值法時,為了準確再顯信號,示波器的采樣速率至少需為信號最高頻率成分的2.5倍。使用線性插值法時,示波器的采樣速率應至少是信號最高頻率成分的10倍。這也解釋了示波器用于實時采樣時,為什么最大采樣率通常是其額定模擬帶寬的四倍或以上。
在談完采樣率后,還有一個與DSO的A/D密切相關的概念,就是示波器的垂直分辨率。垂直分辨率決定了DSO所能分辨的最小電壓增量,通常用A/D的位數n表示。前面我們提到現在DSO的A/D轉換器都是8位編碼的,那么示波器的最小量化單位就是1/256,(2的8次方),即0.391%。了解這一點是非常重要的,對于電壓的幅值測量,如果你示波器當前的垂直刻度設置成1v/div的檔位,那意味著你的測量值有8V*0.391%=31.25mV以內的誤差是正常的!!!因為小于31.25mV的電壓示波器在該文件位元下已經分辨不出來了,如果只用了4位,那測出來的誤差更驚人!所以建議大家在測量波形時,盡可能調整波形讓其充滿整個屏幕,充分利用8位的分辨率。我們經常聽到有工程師抱怨示波器測不準他的電壓或者說測量結果不一致,其實大多數情況是工程師還沒有理解示波器的垂直分辨率對測量結果的影響。這里順便提一下,關于示波器的測量精度問題,必須澄清一點——示波器本身就不是計量的儀器!!!它是“工程師的眼睛”,幫助你更深入的了解你的電路的特征。
圖7 是用模擬帶寬為1GHz的示波器測量上升時間為1ns的脈沖,在不同采樣率下測量結果的比較,可以看出:超過帶寬5倍以上的采樣率提供了良好的測量精度。進一步,根據我們的經驗,建議工程師在測量脈沖波時,保證上升沿有5個以上采樣點,這樣既確保了波形不失真,也提高了測量精度。

圖8 采樣率過低導致波形失真
提到采樣率就不能不提存儲深度。對DSO而言,這兩個參量是密切相關的。
存儲、存儲深度
把經過A/D數字化后的八位二進制波形信息存儲到示波器的高速CMOS內存中,就是示波器的存儲,這個過程是“寫過程”。內存的容量(存儲深度)是很重要的。對于DSO,其最大存儲深度是一定的,但是在實際測試中所使用的存儲長度卻是可變的。
在存儲深度一定的情況下,存儲速度越快,存儲時間就越短,他們之間是一個反比關系。存儲速度等效于采樣率,存儲時間等效于采樣時間,采樣時間由示波器的顯示窗口所代表的時間決定,所以:
存儲深度 =采樣率 × 采樣時間(距離 = 速度×時間)
力科示波器的時基(Time base)卷標即直觀的顯示了這三者之間的關系,如圖9所示

圖9 存儲深度、采樣率、采樣時間(時基)的關系
由于DSO的水平刻度分為10格,每格的所代表的時間長度即為時基(time base),單位是t/div,所以采樣時間= time base × 10.
由以上關系式我們知道,提高示波器的存儲深度可以間接提高示波器的采樣率:當要測量較長時間的波形時,由于存儲深度是固定的,所以只能降低采樣率來達到,但這樣勢必造成波形質量的下降;如果增大存儲深度,則可以以更高的采樣率來測量,以獲取不失真的波形。
圖10的曲線充分揭示了采樣率、存儲深度、采樣時間三者的關系及存儲深度對示波器實際采樣率的影響。比如,當時基選擇10us/div文件位時,整個示波器窗口的采樣時間是10us/div * 10格=100us,在1Mpts的存儲深度下,當前的實際采樣率為:1M÷100us=10Gs/s,如果存儲深度只有250K,那當前的實際采樣率就只要2.5GS/s了!

圖10 存儲深度決定了實際采樣率的大小
一句話,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻噪聲和高速信號的低頻調制。